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Bloch wave theory of modulational polarization instabilities in birefringent optical fibers
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The modulational instability gain spectra, of an arbitrarily polarized intense pump wave that experiences
periodic nonlinear polarization rotation in a birefringent optical fiber, are derived by Floquet analysis. The
predictions of the linearized analysis are confirmed by numerical simulations of the coupled nonlinéar Schro
dinger equationd.51063-651X%97)01907-1

PACS numbgs): 42.81.Gs, 42.65.Sf, 42.65.Ky

[. INTRODUCTION of the coupled nonlinear Schiimger equations for the two
polarization components of the field in the figé]. We be-
Over the last ten years, there has been growing researdigve that the present analysis is important for describing the
activity in nonlinear mode coupling phenomena in opticalexperimental resultg13,19,2Q and for assessing the possi-
fibers and waveguides. The interest in this work was motibility of exploiting MI gain in all-optical processing devices.
vated by the applicative demand of ultrafast all-optical signaMoreover, the present approach could be easily extended to
processing devices that may operate in the frequency rang$Sess the role_of parametric amplification in several differ-
of tens of GHz and higher, that is beyond the capabilities ofNt mode-coupling phenomena.
electronics. A typical successful example of an application of
nonlinear mode coupling effects is given by the nonlinear
polarization response of optical fibers, which permits ul- Il. EVOLUTION EQUATIONS
trashort pulse generation through pulse reshaping and The coupled equations for the two circular polarization
equivalent fast saturable absorber action in fiber-based lasegomponents of the pump wave reggj16|
Moreover, nonlinear polarization effects also play an impor-
tant role in all-optical processing devices, such as, nonlinear
optical loop mirrors and in fiber-based transmission systemsdA: v JA_ K’ *A, Ap
Another basic example of a nonlinear device for which the' 9z ' '2 aT 2 aT2 AT A
same type of coupled-mode description holds, is given by the
nonlinear directional coupler, first proposed by Jerjsgn
In this work, we intend to analyze the role of nonlinear
polarization rotation of the pumj2—5] on parametric ampli-
fication or modulational instabilityMI) effects in birefrin-
gent nonlinear media, taking an optical fiber as the most
relevant example. In fact, as we shall see, in the presence oPA_ v dA, K’ J*A_ Ap
spatial instabilities for the continuous waf@v) evolutionof | 57 712 57 ~ 2 a2 TPA-T 5 A+
the pump 58|, the large nonlinear polarization changes that
occur when the pump wave is close(but not exactly ohan
unstable eigenmode of polarization may lead to substantial
variations to the parametric gain spectra of a frequency de-
tuned signal. Although MI of intense polarized beams in bi-
refringent fibers is an issue of relevance for several of the
above listed applications, earlier analyses of parametric gaiwhere 8 and A3 are the common phase velocity and the
were restricted to the simplest cases where no pump polalinear birefringencey andk” represent the walk-off between
ization rotation occurs. In fact, the known cases involve ahe two linear polarization modes and group velocity disper-
pump beam that is either coupled to a principal birefringenceion (this is assumed to be equal for both modes for simplic-
axis[9—-13, or equally split between these axes in a highlyity) at the mean wavelengtky, respectively. WhereaR is
birefringent fibel{14—1§. We show here that Bloch or Flo- the nonlinearity coefficient. For the purpose of analytical and
quet theorem permits the linear stability analysis of a pummumerical analysis, it is convenient to deal with a reduced
wave with an arbitrary input polarization state. In fact, thenumber of parameters. Hence, we rewrite Efjsin terms of
full pump-power dependence of the modulational instabilitythe dimensionless variablesu. =(A. 1\P)exp(=iB2),
(MI) gain spectra is derived here. We confirm the results ofvhereP=|A_ |+ |A_|? is the total input pump power, ob-
the linear stability analysis by means of the direct simulatiortaining

2R ) )
+ ?(|A+| +ol|A_|HA, =0,

2R
+ 5 (AP +alAL[)A_=0, (6N
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du, O6H Sdu_ pdlu, u_ the special case where the pump is coupled to a stable fiber
Lyl il e Y principal axis,|\|= exp(y:) andG =25 /&g reduces to the
¢ sul 2 dr 2 It 2 : :
usual MI power gain, wherég represents the period of small
+2p(Jus|?+olu_|?u,, polarization oscillations about this axis.
Iu_ SH Ssau, 7 22U . u, IV. MODULATIONAL GAIN SPECTRA
"9 Tour 2 ar 2 a2 2 As we have seen, the Floquet theorem permits us to nu-
) ) merically calculate from the Floquet exponent the un-
+2p(Ju-|*+alus[*u_, (2 stable sideband power gaior growth rat¢ G=2 InA|/&,

as a function of the sideband detuniigand the dimension-
where the Hamiltonian H="% dr 2p(|u.|*+|u_]|* less pump powep. The conditionp= 0.5 corresponds to the
+alu Pus ) +3- 2 |uy?2- plu; |22+ 5 Reut u; )12 bifurcation of the fast axis eigenmode, whergas1 corre-
is  conserved to_gether with  the photoﬁ flux SPonds to the cw switching power for a circular pupig].
Q=S %|u,>+|u_|2dr. In Egs. (2 we set For simplicity, we restrict our attention here to the case of
£=2n7/Z,, where Z,=2m/AB is the linear beat normal group velocity dispersiofi.e., »=—1), and we
length TE’ 2alZ KT, 7=sgnk’), 6=v/VABK] mainly consider the case of a weakly birefringent fiber, that

— (\o/27c) VABIK'], andp=RP/(3A ) is a single param is, where it is reasonable to neglect the polarization walk-off.
=(No , = -

eter which has the meaning of a normalized total power. InHowever, we briefly discuss the effect of varying the polar-

the steady state, Eqél) may be solved exactly in terms of ization dispersions in the most relevant case of a pump

Jacobian elliptic functionf2—5]. Such solutions are consid- equally split _betwe_en the_ two birefringence axes. In thE’T
: o . anomalous dispersion regime, the usual scalar Ml has typi-
ered in detail in Appendix B.

cally larger gain values than the polarization instability and
therefore polarization effects are more difficult to observe.
I. BLOCH WAVE ANALYSIS Moreover, the numerical solutions indicate that the competi-
. . . tion between scalar and perpendicular modulational instabili-
We analyzed the modulational stability of the rotating so-ties lead to spatiotemporal chaotic behavior for the light
lution of Egs.(2) by considering a small additive perturba- \aves in birefringent fibef12].
tion a. and linearizing the equations far. about the pump. First of all, it is interesting to compare th@nalytica)
Details on the derivation of the linearized sideband equationﬁ]odu|ationa| gain Spectra that are obtained when the pump
are given in Appendix A. The linearized equations containwaye is oriented exactly on the polarization eigenmades
the formal expression of the periodic solutions for the pumpeither the fast or the slow birefringence axif the cw so-
fields, reported explicitly in Appendix B. The linear stability |ytions of Eqgs.(1), with the Floquet gain spectra which cor-
of the resulting system of four perturbation equations for therespond to a pump that is initially very close to the same
Stokes v.) and anti-Stokesy(..) sidebands in each of the eijgenmodes. In Fig. 1, the solid curves indicate the MI gain
two counterrotating circular polarizations may be derived byG versus the sideband detunifiywith a linearly polarized
applying the Floguet theorgequivalent to Bloch theory in pymp wave that is oriented either at 1° from the sld¥g.
the context of solid-state physjcef wave propagation in  1(g)] or the fast[Fig. 1(b)] axis. Here the dimensionless
linear periodic medid21]. We rewrite the linearized side- pump powemp=1.2. On the other hand, the dashed curves in

band equations in the general form Fig. 1 show the conventional MI gai6, that is predicted
with a pump that is coupled exactly on either the slow or the
dX (&) fast axis[9]. This gain reads as
d—§=M(§)X(§), 3
Ga=(Q?F2)(4p—0%£2) , 4

where X=(w, v} ,w_,0*), and M(¢) is a ¢ periodic  where the uppeflowen signs stand for a pump aligned with
4X4 matrix whose spatial period=¢g is equal to the the slow(fash fiber axis.

nonlinear beat length or period of the stationary pump As can be seen in Fig. 1, in the case of slow axis excita-
evolution from Egs.(2) (see Appendix B By choosing tion, the parametric gain curve is virtually the same when-
the four fundamental or independent initial condi- ever the pump is rotated from the axis by a few degrees_
tions X,;(£=0)=(1,0,0,0, X5(§=0)=(0,1,0,0), X3(£=0)  Whereas Fig. (b) reveals that the shape of the MI spectrum
=(0,0,1,0), andX4(§=0)=(0,0,0,1), one readily obtains with the pump on the cw unstable fast axis may be deeply
from the solution of Egs(3) at {= &g the principal solution  deformed as soon as the pump wave is slightly misaligned
matrix S={X}(&= &), X5(£= &), X5(6=&g),X4(E=¢g)}  from the axis. In particular, the MI gain with a finite detun-
(heret denotes the vector or matrix transpps®y applying  ing from the pumge.g., forQ0=1) takes much larger values
Floquet (or Bloch theorem [21], the eigenvalues than the gain at zero detunings, which corresponds to the cw
A= exp(m=tio) of S (these are also known as Floquet mul- polarization instability effect. In such cases, the noise-seeded
tipliers) such that|]\|>1 yield the linear instability of the MI will preferably lead to the growth of sidebands with rela-
pump wave with respect to the growth of sidebands with aively large detunings, with either slow or fast axis excita-
given frequency detuning, sa}. In fact, the scattering ma- tion. The sensitivity of the gain shape to small changes of the
trix at an integer number of periods, sy nég, is S". In input polarization of the pump, when this is aligned with the
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FIG. 1. The solid curves indicate the MI ga vs sideband detunin@ for p=1.2 and a linearly polarized pump wave oriented at
1° from the(a) slow axis or(b) fast axis. The dashed curve (b) shows the on-axis gai6, .

fast axis, is clearly associated with the cw instability of thisthe case wittp=1 the gain shape of the eigenmode is nearly
eigenmodéwhich corresponds to an unstable saddle point ippreserved. Whereas for pump-power values that are about
the phase-space representatioim fact, as shown in Fig. 10% lower or higher than unity, the modulational gain at
2(a), for a pump wave that is initially polarized close to the zero detunings drops to low values and peak gain is obtained
slow mode the state of polarization executes small oscillaat a finite sideband frequency shifsee Fig. 8) with
tions about this stable axis. On the other hand, Fifp) 2 p=0.75, Fig. 3c) with p=1.5, and Fig. &) with p=2]. For
shows that forp=1, even the slightest misalignment from pump powers lower than the cw polarization instability
the fast axis leads to large periodic polarization rotations thathresholdp=0.5, no Ml is observed as the pump is polarized
approach counterrotating circular states. In Fig. 2 we displaylose to the fast axis. We may, therefore, conclude that the
the evolution of the polarization angleelative to the slow large asymmetry between fast and slow axes, which exists in
and fast axis in Fig. @) and Fig. Zb), respectively versus  the cw evolutiong6] and in the gain spectra for a pump
the ellipticity e=|A,|>—|A_|?> over the nonlinear beat exactly aligned with an axig9], is not preserved for a small
length ég . Here the pump with powep=1 is linearly po-  misalignment. This explains the inherent practical difficulty
larized at the input, and it is oriented at 1° from either thein observing the fast axis instability in the experimeja§].
slow [Fig. 2(@)], or the fas{Fig. 2(b)] fiber axis. Clearly, the Floquet analysis may perfectly apply to cal-
Figure 3 illustrates dependence on input poweof the  culate the modulational gain spectra that are associated with
shape of the Floquet gain spectrum with a pump at 1° fronany periodic evolution of the pump beam. For example, Fig.
the fast axis as in Fig. 1. As can be seen in Figp)3only in 4 illustrates the dependence of the sideband @aian the
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FIG. 2. Phase-space representation of pump polarization evolution over the ggriéor an input linear polarization at ange=1°
from (a) slow or (b) fast fiber axis.
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FIG. 3. As in Fig. 1, with a pump at 1° from the fast axis, dagdp=0.75,(b) p=1, (c) p=1.5, and(d) p=2.

input powerp, with a pump at 45° from the birefringence  On the other hand, for beam propagation close to the
axes. This permits to extend to the case of low or intermedizero-dispersion wavelength region, the relative importance
ate birefringence, the analysis that was previously carried ouif polarization walk-off increases and, as a result, a super-
only in the high-birefringence limif14,15. In Fig. 4 we  position may occur between the modulational gain spectra
show the limit case=0. As it can be seen, in this case MI that originate from different mechanisms of phase matching.
is presen{with a reduced gainalso for relatively low pump Considering, for example, the case wi#ty=1.25 mm,
powers: Fig. 4a) has been obtained fqr=0.25, and shows \,=1.55um, andk”=0.4 ps’/km, one obtains’=2.8. Fig-
the presence of multiple narrow gain peaks for sidebandire 5 has been obtained in this case: as can be seen, for
shifts slightly larger than unity. On the other hand, Figs.p<1 the main feature of these spectra is the appearance of a
4(b)-4(c) show that forp=0.5 the MI gain curve has a large number of gain peaks for sideband detunifigs(},,
single peak at progressively larger detunings, similar to thavhere ;=6 corresponds to the low-power limit of the
case when the slow axis is excited. phase-matching condition of four-wave mixing in a high-
Let us briefly consider now the role of finite polarization birefringence fiber{15]. Nevertheless, Figs.(& and 5d)
dispersionsé on the MI spectra with a pump at 45° between show that for power valuep equal or larger than one, the
the axes. By using the relationship=(\o/2mc)\27/  gain spectral profile of coherent Ml is still nearly unchanged
(ZglK"|), in the case of a high-birefringence fiber with with respect to the>=0 case.
Zg=1.25 mm (as in Ref.[15], where the group-velocity Another interesting example of application of the Floquet-
walk-off was equal taw =1.6 ps/m atAy=600 nm and the Bloch analysis is the computation of the gain spectra when
group-velocity dispersiork” =65 ps’/km, one obtains the the pump is circularly polarized. This input condition corre-
relatively small values=0.09. The gain spectra calculated sponds to the case that was considered in the early experi-
for the same power values as in Fig. 4 show that litlements of polarization instability in birefringent fibef$9].
changes occur with respect to the=0 case in this range of Note that this situation directly corresponds to the input ex-
values of group-velocity differencénd even for one order citation of an individual guide when Eq$l) describe the
of magnitude larger walk-off, equivalent to linear beatwaveguide field coupling in a nonlinear directional coupler.
lengths ten times shorter than the value of the experiment ifigure 6 shows that cw gaifi.e., at{=0) is observed in
Ref.[15]). We may, therefore, conclude that polarization dis-this case as long gs<1.5. Figure a) (p=0.75) and Fig.
persion does not influence polarization instabilties in opticab(b) (p=1.01) show that fop=<1 the MI gain profile is
fibers at operating wavelengths is the visible region of thespectrally flat, whereas the cutoff frequency grows larger
spectrum. with input power. Whereas fqu=1.5[see Fig. 6c)] the cw
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FIG. 4. As in Fig. 3, with a pump at 45° from fiber axes+0 and(a) p=0.25,(b) p=0.5,(c) p=1, and(d) p=2.

gain starts to drop relative to the peak value at finite detunfarized pump with powep=1 is oriented at 1° from the
ings. Finally, Fig. &d) shows that fop=2 the gain spec- (stable for cw slow axis of the fiber. The Ml is induced by
trum exhibits a single peak at progressively larger values oéeeding the pump beam with weak upshifted and down-
the frequency shift. shifted sideband pair at frequency given by the optithal,
yielding the peak gaindetuningQl=(,=2. As shown in
V. NUMERICAL RESULTS fthe first stage of propagation, the pump wave remains polar-
ized very close to the slow axisote that the uniform polar-
In this section, we compare the predictions of the linearization rotation shown in Fig.(3) is too small to be seen in
stability analysis with the full numerical solutions of Egs. Fig. 7]. However, after about one linear beat lengile.,
(2). In order to simulate either the induced or the spontane¢=2+) a deep temporal modulation develops on both polar-
ous MI, we shall consider as initial condition to the simula-izations. At the same distance, a strong temporal modulation
tions, the injection along with the pump beam of either a pairalso develops over the weak fast axis comporteat shown
of sidebands perturbatiofi.e., a. = e cos17) where typi- in Fig. 7).
cally we take ¢ in the range betweene=10"" and The frequency content of this modulation is clearly illus-
e=10""°] or Gaussian-distributed white noise, respectively.trated in Fig. 8, that shows the spectral intensity of both
For the numerical solution of Eq$2) we used the standard polarization field components. It is evident that the Ml of the
Fourier split-stegor beam propagatiormethod where peri- pump leads to nearly complete depolarization of the input
odic boundary conditions are implicitly imposed. We use abeam through the decay into its sideband modes and their
typical mesh of 1024 points on a temporal window which isharmonics. These periodically oscillating sidebands have in-
typically four times the period of the unstable modulation.deed a strong component along the fast axis.
This ensures that the spectral window includes several |n Fig. 9 we show the spectral evolution of the polariza-
higher-order sidebands of the inject@dl most unstableper-  tion components when the seed frequency is chosen outside
turbation (in the figures reported below, we show only the the gain bandwidtie.g., Q=1 in this casg The contrast
central region of the spectral windgwThe envelope ampli- with the case of Fig. 8 is clear. In this case, the small cw
tudes of the linearly polarized components along the slowolarization rotation dominates the evolution of the input
and fast axes are obtained ag=(u,+u_)/y2 and beam, and an extremely weak conversiaotice the differ-
uy=i(u,—u+)/\/§, respectively. ent vertical scale for the fast mode in Fig. 8 and Fipi9
Figure 7 shows the evolution for a distange 3¢5 of the  visible only after three nonlinear beat length.
slow axis component of the field intensity. The linearly po- The nonlinear development of Ml for a pump wave po-
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FIG. 5. Same as in Fig. 4, with=2.8.

larized close to thécw unstablg fast fiber axis is shown in  sionless powep=1, that was linearly polarized at 1° from
Fig. 10 for one period (i.e., nonlinear beat length either the slow or fast axis, respectively. With a pump close
¢=£g=19) of the evolution. Here we display the evolution to the slow axis one observes the buildup of side frequencies
of the spectral components of the light field in the slow andpolarized along the fast axis and peaked around the peak
fast polarization modes, when the pump beam is oriented gtequency detunind)=2, in agreement with the relatively

1° from the fast axis, and=1. Again, the Ml is induced by  narrowband parametric gain spectriisee Fig. 1a)]. Con-
sidebands with) = ,=1. In this case, the cw instability of yersely, one obtains that a pump polarized close to the fast
the pump initially leads to its almost complete rotation into 4xjs decays through the emission of a broadband spectrum of
the orthogonal slow mode. Remind that this conversion 0cgije modes, which corresponds to the complete depolariza-
curs twice within one periofisee Fig. 20)]. However, after tion of the input field.

the initial conversion is ultimated, when back conversion At low power the parametric decay has a lower gain, and

from the slow into the fast mode sets in, one observes th :
onset of parametric scattering into the sideband modes. Note expected to occur on a longer scale length, that is after

that the polarization sidebands develop at nearly the SamsFi\_/er_al Sr? atlal_pelg_odsli)f p(r)]Iarlzatlon rotatnt(?]n of thlet_puma.
distance in the case of either sldaee Fig. 8 or fast(see IS IS Shown In Fig. 11, where we report the evolution o

Fig. 10 mode excitation. These results clearly confirm that, "€ Slow axis intensity, for a pump beam polarized at 20°
due to parametric conversion or MIs, the asymmetry betweef[oM the slow axis p=0.3 [here the peak gain is
fast and slow modes which is predicted by the cw analysis i&=G(£2,)=0.5], and injected sidebands &t=(,=1.57.
a transient effect which only lasts over about one linear beafts shown, in this case the depolarization of the cw beam
lengths(i.e., £=24). Beyond this distance, an intense mono-accompanied by the parametric decay only occurs after sev-
chromatic pump wave decays into a set of sidebands witlral cycles of polarization oscillation.
periodically rotating states of polarization, nearly irrespec- Finally, we also simulated the evolution of a circularly
tive of the choice of the input polarization andiee., close  polarized pump beam at the input. In this case the most in-
to either the slow or fast aXis teresting behavior occurs around the critical powerl. At

In the case of spontaneolise., noise seededvll, the  powers slightly belowp=1 a cw pump experiences com-
decay of the dynamically evolving cw pump occurs in favorplete polarization rotations, whereas abgre 1 the pump
of the amplification of a range of frequencies that lie within only exhibits relatively small oscillations about the input cir-
the gain spectrum. For example, we simulated the spontaneular polarizatior[6,7]. Moreover, crossing the critical con-
ous parametric decay of an intense pump wave with a dimerdition p=1 leads to halving the spatial periggd (e.g., for
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FIG. 6. As in Fig. 3, with a circularly polarized pump wave, a@aglp=0.75,(b) p=1.01,(c) p=1.5, and(d) p=2.

p=0.99 andp=1.01 we obtainég=13.4 andég=6.7, re-  circularly polarized pump mode clearly demonstrate the limit
spectively; see also Appendix)BHowever, our present re- of validity of the purely cw(or dispersionlegsdescription of
sults show that the decay of the periodically coupled polarpolarization instabilities in birefringent nonlinear optical me-
ization modes via MI poses a limitation to the distance fordia. In fact, when dispersiofand thus phase matching in-
which this cw picture describes accurately the propagatiowolving other frequency componehts taken into account,
dynamics. After one or fewdepending slightly on the initial one observes that the cw period doubling phenomenon and
seed spatial periods of the pump polarization rotation, anthe abrupt polarization switching, which are both associated
injected or spontaneously growing periodic modulationwith the crossing of the cw critical switching power1 are
draws a significant amount of energy from the rotating pump
waves. This modulation rapidly develops into a series of
higher-order harmonics which lead to an irregular beating o
the field intensity profile. Figure 12 shows the evolution of
the spectral intensities in the right-handed and left-hande
circular modes, for an initially left-handed pump of power
p=1.01, and white-noise seeding. As shown, the pump beat
experiences cw conversion over one complete perio
(é=7), after which the long-range evolutidin the figure,

we show the evolution over the distanée-2£g) is domi-
nated by a strong decay into sideband modes, which in tur
is responsible for the depolarization of the pump beam. Ir
the formally equivalent case of a nonlinear directional cou-
pler [1], this phenomenon of parametric scattering into side:
bands is expected when c(@r quasi-cw light is coupled
into an individual guide of a beam with power slightly above Distance 6
the switching power of the coupler. A parametric decay is

also obtained over comparable distances in the simulations FiG. 7. Evolution of normalized intensity in the slow mode vs

with pump powers slightly below the critical powg@=1  distances and timer. Here the pump is launched with linear po-

(e.g., withp=0.99). larization at 1° from slow axisp=1, and the seed frequency de-
The above simulation results that were obtained with auning isQ=0Q,=2.

Slow Axis intensity

Time
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FIG. 8. Evolution of spectral intensity fractions in the slow and side the gain bandwidth.

fast modes vs distancg and frequency detunin€), and input at
(=0 as in Fig. 7.

from the pump rather than quasi-cw perturbations. This
physically observable only for relatively short propagaﬂonpo'”ts to a fundamental difficulty in the experimental obser-
distancegi.e., about one or two linear beat length§o the  Vvation of the asymmetry between the two axes which is pre-
contrary, for Ionger interaction distances the present analysiicted by the cw theory of polarization instability. We con-
reveals that parametric decay or Ml leads to a substantidirmed the validity of the linearized theory predictions by
scattering of energy into a series of sidebands of differenmeans of the comparison with the direct solution of the
polarizations and frequencies. coupled nonlinear Schdinger equations that describe beam

propagation in the birefringent fiber.

Note that the same technique that we used here also per-
VI. CONCLUSIONS mits the study of the polarization stability of a weak signal in

In this work, we extended the theory of modulational po-the presence of a counterpropagating intense pump in the
larization instabilities in birefringent nonlinear fibers to the birefringent fiber{22]. Finally, we point out that the spatial
case of an arbitrarily polarized pump beam. The nonlineagounterpart of the present phenomenon is expected to give
polarization rotation of the pump is taken into account byrise to the filamentation of periodically coupled polarization
means of the available exact solutions in terms of Jacobiaplane wavedi.e., dynamical transverse M
elliptic functions. The stability of two pairs of weak side-
bands on each birefringence axis was then investigated by
means of Floquet-Bloch theorem. The gain spectra have then ACKNOWLEDGMENTS
been computed for different initial pump orientations and
power values. The analysis has revealed that the modula- We acknowledge stimulating discussions with E. A.
tional gain spectra that are obtained with a pump beam oriGolovchenko and A. N. Pilipetskii on the calculation of
ented along the unstable fast axis may strongly distort theimodulational polarization instability gain spectra with a ro-
shape when the pump is slightly misaligned from that axistating pump wave. We also thank R. Chisari for her patient
In particular, the large amplitude periodic rotation of thetechnical assistance. This work was carried out in the frame-
pump polarization generally leads to prevailing growth ofwork of the agreement between Fondazione Ugo Bordoni
modulational(i.e., with a relatively large frequency offset and the Italian Post and Telecommunications Administration.
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FIG. 10. As in Fig. 8 for an input pump polarization at 1° from

the fast axisp=1, and a seed frequency detunifig=,=1. =|A.| expli.}. The perturbed pump field reads as

APPENDIX A: LINEARIZED EQUATIONS U= (AL |+a.)expive) (A1)

In this Appendix, we present the derivation of the coupled
linearized equations for the four sideband amplitudes in thavhere|a.|<|A.|. Let us neglect, at first, the time depen-
two orthogonal circular polarization components of the pumpdence of the fields. Inserting EGA1) into Egs.(2) yields
wave. We express the pump fields at central frequency in

terms of modulus and hase asu.=u. _da J a_ .
P ==u=() —|—+=—a+£+—e*'¢’+2po|A+||A_|(a_+a’i)
€ o0& 2
. +2p[(2|A, 2+ olA_[Da, +|A, %% ],
5. 2.5
7.
15 da_ dp_ ay .
: —i——=—a_ ——+ €%+ +a*
% 1 | (?g a_ (?é; 2 - € 2p0—|A+||A*|(a+ a+)

0.5

+2p[(2|A_|?+o|A|Pa_+|A_|2a*], (A2)

i
o '“‘u.ﬁ%’“

: . \\l i
'VI“ Q““” »\/’ “!!"L]‘n‘\ “\' i
uws,!tw.,“\\\' W Aa\l\.@!'
‘m.w..l.‘,m\\u.,,;!!l I
I 9|A.| :+|A:|
6 4 9

Time

where the modulusA..| and phasey. of the unperturbed
fields obey the following equations obtained from E@:

l"

“\ \‘“ “!!!‘!3.“,‘.\ i \“l I
it )‘ "”\l: H‘u

‘ “;“\\NL ‘“““‘“‘11{1'1\\‘ ':.;

(A3)

Distance

FIG. 11. As in Fig. 7, for a pump at 20° degree from slow axis, I —2p(|A+|2+(r|A—|2)+ |AI| cosp (A4)

p=0.3 andQ=0Q,=1.57. 9E 2|A.|
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and¢= ¢, — _ is a nonlinear phase shift, which is respon- ow,
sible for the power-dependent ellipse rotation of the pump -1 g€ =
wave. For silica fibers, that is, far=2, Eq.(A4) becomes

742 N

+p(1-s3)v* +2py1—s5 v*

e apepAli- |A+I2)+| +”A£| cosp , s1—is;
3 2|A. | + —2+2p\/1—s§+95 w_,
(A5) 241-s5
*
whereas the phase shift obeys . v’ 2 1 5
|—a§ Q +p(1 33) 2(1 53)

I |A_[P—|AL]? —p(1— _ e
— =" cosp—2p(|A.|2—|A_|?). (A6 P(1—sy)w,—2pyl—szw_

s, +is
211—24-2p\/1 33 Q(S)U

The pump wave evolutiofi.e., the solution of Eq4A3) and
(A4)] can be expressed more easily either by means of a
Hamiltonian reduction to a one-dimensional oscilld®}; or

with the help of the Stokes paramet¢6s6]. Both methods Equations (A10) are coupled to analogous equations for
permit the representation of the propagation evolution in a
_andv*, which are simply obtained by exchanging the

roperly defined phase space. Here we choose the latter d&-
property P P lus and minus subscripts as well as the sigs,ofnds; in

scrlptlon introducing the dimensionless Stokes parameterE s.(AL0). These four equations can be rearranged to yield
s, 1=1,2,3,

Eq. (3) for the vectorX=(w, ,v*% ,w_,v*).

(A10)

s1=2|A.||A-|cosp , APPENDIX B: EXACT SOLUTIONS

FOR THE PUMP FIELDS

s$,=2|A.||A_|sin¢ , A7 . . .
2=2|A[|A-|sing (A7) In this appendix, we present the exact solutions for the

periodically rotating pump wave in terms of the Stokes pa-
s;=|A_|?—|A.|?, rameters (A7). Equations(2) with d/dr=0 immediately
yield the equations for the Stokes parameters

that represent the local state of polarization of the pump. In . : :

fact, the analytical solution for the evolution of the Stokes S1=2PS,S3,  $=—2p$;S3—S3,  S3=S,,  (B1)
vectors=(s;,S,,S3) is easily written in terms of simple ex- o . i
pressions involving Jacobian elliptic functiofsee Appen- Where the dot stands for derivation with respecg 1dVith a

dix B). Equation(A5) is easily reexpressed as linearly polarized pump, initially oriented at an anglavith
respect to the slow axis of the birefringent fiber, one obtains
3
A . A8 .
g PP yiasy) (A8 s 2y STOEM
Sl(g)_coi ) p Si ( )denZ(fgim) ’
and, after substitution in EqA2), yields
cn(f § )
S =siN20) w5 —7—= B2
. sn(f&;m)
S3(€é)=— sm(20)m '
(2\/_2+2p\/1 ss)a +2py1-s3a* ’
where
(A9)
f=[1+4p’+4p cog26)]**,
The equation fora_ is simply obtained from Eq(A9) by
changing the sign af, ands;. The time dependence of the . 1, 1+2pcog26) B3
perturbing fieldsa.. is now reintroduced, and we write the 2 f2

perturbation as the sum of Stokes and anti-Stdkes, fre-

guency down and up shifted by, sd),>0) sidebands with Note thatm is the Jacobian parameter, not the modulus
amplitudes w.. and v., respectively: a.=a.(£T)  k={m.

=w_ (&) expiQn)+v(&exp(=iQd7). The resulting coupled In the case of a circularly polarized pump wave, for
equations fow_, andv* read as p<l
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s1(§)=—p sr(&m) S3(€) = *seclié).
S2(§)=+sn(&mydn(&;m) (B4)  For input linearly polarized pumps, the spatial periad(in
real-world units the period become&g= ¢gZ/27) of the
s3(£)=*cn(&m), nonlinear pump polarization rotation read as
with m=p?. Forp>1 §B=4Kf(m) , (B7)

$1(&)=—p lsr(p&m)
1) P (p&;m) whereK is the complete elliptic integral of the first kind.

sy(&)=Fp tsn(p&m)en(pém) (B5) Wher_eas W?th a circular_ pump, the abovg expresz{B_??)
remains valid forpp<1, with f=1, andm=p“. Above criti-
s3(§)=*dn(pé;m), cal power p>1), the spatial period becomes
with m=p~2. Finally, for p=1 2K(m)
P y P B= b (B8)
s1(§)=—tanif(§) , _ R .
with m=p~<. Clearly, the periodég—> for p=1, and
s,(&€)=Ftanh ¢)sechié) , (B6) doubles as the critical valyg=1 is crossed.
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